徒然雑記帖

徒然雑記帖

サギと三角形の面積

 

いつも本校のHPにお越しいただきありがとうございます。

 

先週金曜日から始まった体育大会の練習、3連休を挟んで3日目になる今日は、1年生が午前中体育館で集団演技の練習をしました。いかがでしょうか。練習を通して、少しずつ形が出来上がっていることを実感していますか?

 

ところで、列車通学生の中には気付いている人がいるかもしれませんが、人吉駅からすぐのヒヨドリ越えの登り口付近に1週間程前からサギがいます。羽根を閉じたときうまく身体に密着してないので、怪我をしているのかもしれません。愛嬌のある目で私を見つめますので、「どうしたの?怪我したの?ご飯、食べてる?」とか言いながら少しずつ近づいて距離を詰めています。最初は5m位まで近づくと逃げていたのですが、毎日やっていると顔を覚えたのか、心を許したのか数日前から2m位まで近づくことができています。別にストーカーのつもりはありませんが、何となく嬉しいものです。

 

サギにはいい思い出があります。昔、釣にはまっていた時のことです。川岸で釣をしていたら、サギからずっと背後で待たれていたことがあります。つり上げた魚を貰おうとしているのです。そのような光景、時々新聞写真等で紹介されますので、イメージが湧く方が多いかもしれません。まさか自分がその当事者になるとは・・・! とても光栄でした。

魚を釣っているということをしっかり理解し、辛抱強く待つ様子からは知能の高さが窺えます。サギ君に魚をあげようと、ついつい粘ってしまい、これもまた釣の一つの醍醐味と言ってもいいかもしれないな、とか思ったところでした。鳥は警戒心が強いというのが私の認識でしたので、野生のサギがこんなに人間と接する生き物とは本当に驚きです。

 

古来、日本人とサギは親しい関係だったのかもしれません。それを裏付けることとして、温泉の開湯伝説を思い出します。「日本三古湯」の一つ、愛媛県・道後温泉に伝わる「足に傷を負って苦しんでいた一羽の白鷺が、岩間から噴出する温泉を見つけた」という話を聞いたことがある人は多いはずです。このように歴史ある温泉には開湯伝説があり、そこには鹿や熊などの動物が登場することがあるのですが、一番多いのが「白鷺伝説」なんだそうです。

改めてネットで「温泉 サギ」と入れて検索してみると沢山ヒットし、サギが温泉で脚の傷を治したという話は定番になっていることが窺えます。それにしても、あんな堅そうな脚ではお湯の温かさも感じられないのでは?と思うのですが、血管は通っているはずなので、長く湯に入っていれば多少は体も温まるのかもしれません。私が初任や前任校のころによく通った武雄温泉(佐賀)や天草下田温泉も白鷺伝説があります。人吉市内にも「白鷺の湯」という温泉がありますよね。

 

話は変わりますが、生徒の皆さんはサギを英語で何というか知っていますか?

 

答はheron(ヘロン)です。

 

何と、三角形の3辺の長さから素早く面積を求める公式を発見した古代エジプトの数学者・技術者のヘロンHeron)さんと綴りが一緒です!

2、3年生は数学の教科書の中に見受けた人もいると思いますが、ヘロンの公式を発見した人として有名です。その公式とは、三角形の3辺の長さをabcとしたとき、面積を次の式で求めるものです。

 

三角形の面積=√{s(s-a)(s-b)(s-c)}

ただし、s=(a+b+c)/2

 

私がヘロンの公式を初めて目にしたのは、中学1年生の時でした。図書館から借りた数学史の本の中に見つけました。当時、三角形の面積を求める公式は「(底辺)×(高さ)÷2」しか知らなかった私にとって、3辺の長さからそれを求めることができるというのは大変な驚きで、しかもその公式が遥か2000年も前の紀元前1世紀に発見されていたということを知り衝撃的でもありました。三角関数(三角比)を使わずに中学生でも理解できる証明が載っていて、理解をしようと、もがきまくった覚えがあります。

当時、この公式を使って、あることに挑戦したことも懐かしく思い出します。何かというと、三角形の3辺とも長さが自然数で、かつ面積も自然数となるような3辺を見つけることです。結構時間を費やしたはずですが、結局その当時見つけることができませんでした。随分後になって、そういう三角形は「ヘロン三角形」と名付けられ、3辺の長さの三つ組(abc)をヘロン数と呼ぶことなどを知りました。例えば(13,14,15)はヘロン数(面積は84)です。

 

今朝の7時35分現在の本校の総アクセス数は1159305でした。この数字、各桁の数の総和(1+1+5+9+3+0+5)を求めると何と「24」。

私の名前(西)の擬音語(オノマトペ)の数字表現である「24」と偶然同じです。そして今話題にしている「サギ」の漢字「」も総画数24画です。凄い偶然を感じます。ということで、中学の時に挑戦したことを再びやってみようという気になりました。

即ち、サギにあやかって、面積が24になる三角形の3辺がヘロン数として存在するか見つけようというものです。生徒の皆さん方の体育大会の練習を眺めながら、数時間色々な数字で試してみましたが結局、見つけることができませんでした。

生徒の皆さんで、もし見つかったら教えてください。ただし、存在しないことを証明しようとすると、数学界ではすぐ難問になりますので要注意です。

【校長】

18と秋の到来

夏休みも残り1週間を切りました。焦っている人がいるかもしれません。

本校のホームページ、たまたま開いた昨夜8月26日の20時13分現在の総アクセス数は1142052でした。

この数字をずっと見ていたら、面白いことに気付きました。下4桁の2052と上3桁の114との関係です。

何と、2052÷114=18ということで、綺麗に割り切れるのです。たまたま目にした数字で、このことに気付き、当夜の満月も相まって「吉兆」を感じたところでした。

この18という数字、西洋では「悪魔の数字」とされる666との関係(6+6+6=18など)がよく取り沙汰されますが、私にとっては小中学校の時に何度か出席番号でお世話になったこともある思い出深い数の1つです。

18といえば、相良33観音巡りで相良村川辺にある18番札所「廻(めぐ)り観音」につい3日前、熊本出張から五木越えで帰る途中に立ち寄ったばかりでした。すぐ横の川辺川が激流のようになっていて、鮎釣りをする人が流されないかと気を揉みました。

  


  そんなことを思い出していたら、「百人一首の
18番の歌は何だったかな?」と気になりました。(教諭のころ、百人一首部の顧問をしていました)

調べてみたら、「住の江の岸に寄る波よるさへや・・・」で、平安時代の藤原俊行の歌です。

藤原俊行といったら、この歌よりも中学校の時の国語で習った秋来ぬと 目にはさやかに 見えぬども 風の音にぞ おどろかれぬる」が有名だと思います。視覚を否定し聴覚で秋の到来を感じ取っている歌で、とても分かりやすく、この時期必ず口ずさんでしまいます。生徒の皆さんは、既に秋の気配を感じていますか?

私は、枯れて元気を失ったひまわりの大輪が頭を下げて茶色く変色しつつあるのを見て、「しっかりしてよ、ひまわり君!」とか言いながら夏の終わりを感じました。

【校長】

 

 

残暑お見舞い申し上げます

 

立秋(8日)は過ぎましたが、日中の異常な暑さは続いています。でも、夕暮れの薄闇からカナカナと消え入るように聞こえてくるひぐらしの鳴き声に、静かに秋が近づいていることを感じます。

夏休みもいよいよ折り返し。宿題が気になり始めた人がいるかもしれません。計画を立ててお過ごしください。

 

この間も、3年生は連日登校して、SPI対策、履歴書の清書等に懸命に取り組んでいますし、1,2年生は暑い中、さらに暑い体育館等で練習に明け暮れています。

 

先ほどは、8月3日(金)から6日(月)にかけて、岐阜県海津市長良川国際レガッタコースで開催されたインターハイ・カヌー競技に出場した選手7名が顧問の中島先生と共に結果の報告に来室しました。カナディアンペア500mが準決勝3位、カナディアンフォアが5位入賞ということでした。県の青のユニフォームを着て、真っ黒に日焼けした姿が凜々しかったです。おめでとうございます。

 

話は変わりますが、明日11日は新月です。何か目標を達成しようと思うとき、人はその達成を強く願うものですが、その最もよいタイミングが新月の日だとされています。2学期がうまくスタートできるように、月に願いを込めてみてはいかがでしょうか。

【校長】

全校応援、お世話になりました。

 

いつも本校のHPにお越しいただきありがとうございます。

 

昨日は全校応援でした。炎天下、第4シードの有明高校との試合は、天候と同じく熱いものとなりました。

生徒の皆さんの気迫のこもった応援が選手の背中を押したのでしょう。白熱した息詰まる接戦を制して、2対0で勝利。校歌を高らかに歌うことができ、胸が高まりました。

そして・・・、胸をなで下ろしたこともあります。昨日の試合では全部で34人が熱中症の疑いで救急搬送されたそうですが、本校からは救急車に乗った生徒が一人もいなかったということです。体育や部活での日頃の身体の鍛え方が本物であることを証明したようなものです。三綱領にある「剛健」がしっかり身についていています!

「人吉球磨から甲子園に」の悲願達成のためには、あと2回勝ち続けなければなりません。引き続き応援をお願いします。

 

ただ、県高野連からは全校応援の自粛要請がありました。そこで、21日(土)の準決勝については、せっかく応援計画を立てていましたが、全校応援は急遽見合わせることにしました。

希望者が自主的に藤崎台球場に応援に行くことを妨げるものではありませんが、熱中症が心配されます。テレビ等を通しての応援でも「祈り」は通じるはずです。できましたらその方向での協力を宜しくお願いします。

 

最後に・・・。3日前の熊本高校と本校の試合は7回裏の時点で、8対1で7点差のコールドゲームで勝利しました。

そこで思ったのですが、右のスコアーボードにあるように、毎回1点ずつ得点して、7対0で7回コールドゲームになってしまうような試合が高校野球の公式戦で過去にあったことがあるのでしょうか?

 

スコアーボードに1が7つ並んだ様子ある意味壮観ですが、これは、17日(火)午後7時53分時点のアクセスカウンタ(右写真)からの連想です。

(一昨日の記事はこちらをクリック→総アクセス数1111111と7月17日と239

 

そんなゲームがあれば「どういう試合運びだったらそういうことが起こるのか・・・」と想像が広がり楽しかったです。

                        【校長】

総アクセス数1111111と7月17日と239

いつも本校のHPにお越しいただきありがとうございます。

外ではセミたちが短い夏を謳歌しているようで、蝉時雨(せみしぐれ)が凄いです。私が高校生の頃、「蝉時雨という日本語が死ぬほど好き」という友達がいました。

改めて蝉時雨の意味を手元の辞書で確認したところ、「たくさんの蝉が鳴いているさまを時雨の降る音にたとえていう語」(時雨は「初冬の頃、一時、風が強まり、急にぱらぱらと降ってはやみ、数時間で通り過ぎてゆく雨)とありました。夏生まれの私にとっても、朝から蝉時雨を聞きながら目が覚めるのは幸せなひと時ですが、「死ぬほど」という表現が可笑しく、この季節になるとその友のことを思い出します。

生徒の皆さんは、死ぬほど好きな日本語ってありますか?私自身、好きな言葉なら「木漏れ日」や「恩寵(おんちょう)」、「逢瀬」、「春うらら」*1等、ぱっと思いつきますが、「死ぬほど・・・」と言われると、はて何だろうと考え込んでしまいます。

ところで、今現在、午後7時53分現在のアクセス件数は、1111111

「レビュニット」というのは、ほとんどの生徒の皆さんにとって初めて耳にする言葉かもしれません。この数字もそうですが、111や11111のように1がいくつも並んだ数字を「レピュニット」(repunitrepeated unitの略】)といいます。そして、素数であるレピュニットは「レピュニット(型の)素数」と呼ばれ、あるレピュニットが素数であるかどうかというのが、例によって素数ファンの関心事*2になっています。

この1111111は、レピュニット素数でしょうか?さっそく素因数分解ができないか確かめてみます。

色々な素数で割ってみました。なかなか素因数が見つかりません。根負けしてネット上の素数判定機にかけてみたら、素数ではありませんでした。1が7連続するこの数からは想像すらできない、意外に大きな2つの素数の積になっていました。

1111111=239×4649

従って、約数は1,239,4649,1111111の4個あることになります。

4649という素因数が何ともいいですね。「よろしく」と読めます。人吉から熊本まで国道219号線を2時間運転すると、このナンバーをつけたクルマと1台はすれ違っている気がします。でも、希望ナンバー制の人気ベスト200のランキングには入っていませんでした。

そしてもう一つの素因数239も・・・。

私はこのことにたった今気付き、あまりの偶然に恐れおののいているところです。今日7月17日の数字の並びである717を素因数分解すると

717=3×239でした。ここにも239が隠れていたとは!?

ということで、1111111の数字の並びをそのままにして、加減乗除等の記号を入れて、717を作ってみたくもなりました。

{(1+1+1)!}!-(1-1)!-1-1=717 → 7月17日

【注】 中学生の皆さんへ !は「階乗」または「ファクトリアル」と読み、詳しいことは高校の数学で学習しますが、例えばここに出てくる3!なら3×2×1を計算して6ですし、ここではさらにその6の階乗を求めています。6!=6×5×4×3×2×1ですから720になります。このようにn!なら、n×(-1)×…×3×2×1の自然数の積を計算します。

そして、(1-1)!は0!のことです。0!(ゼロの階乗)は1です。これは約束(決め事)ですから、「どうしてそうなるの?」とか考えたらいけません。


最後に1111111に関する頭の体操を3問出題します。生徒の皆さん、よかったら解いてみてください。

   1111111が2進数だとしたら、これは10進数ではいくらでしょう?

   1+11+111+1111+11111+111111+1111111=?

   1111111の計算結果は?(なるべくエレガントに計算してください)

答え

   127

   1234567

   1234567654321

略解

 ① 1×2+1×2+1×2+1×2+1×21×2+1×2

=64+32+16+8+4+2+1

=127

これは情報技術検定3級のレベルです。2進数を日常的に扱うコンピューターのシステムエンジニア(SE)にとっては、すぐに127と反応できないと飯を食べていけない・・・とか聞いたことがあります。


②          1

+      11

+     111

+    1111

+   11111

+  111111

+ 1111111

=   1234567


③ 1111111

1111111×1111111

1111111×(1000000100000100001000100101

=  1111111000000

  111111100000

    11111110000

      1111111000

        111111100

          11111110

            1111111

=  1234567654321


*1
木漏れ日、英語に一語で翻訳できない日本語の代表的な例とされ、untranslatable word として英語の記事等でよく見受けます。「木々の葉を通過する日光」ということを説明するしかなくなるようで、手元の和英辞典には、Light that comes through the leaves (of a tree)なんて載っていました。右の写真は、先月、あさぎり町の白髪岳に登ってきたときの登山道にできていた木漏れ日です。

時々耳にする恩寵、奥深い言葉です。神が人間に与える恵み、神の無償の賜物(たまもの)のことです。村上春樹の小説の多くは、恩寵が深い所でテーマなっているようで、そのことを意識しだすと頭が混乱します。

「契りを結ぶ」は古典では必須の言葉ですよね。現代において、「約束する」という堅い意味で使われることはあまりないように思うのですが、そういう文字通りの意味があるからこそ、恋愛についてのくだりでは意味するところが明らかなのに、刺激的な匂いを感じさせない言葉だと思っています。

「春うらら」は漢字では「春麗」とありました。「春のうららの隅田川~♪」(by滝廉太郎)は、文省唱歌として中学校の時に習いましたが、文省唱歌と名を変えて今でも指導しているんでしょうか?


*21が並んでいる数はいかにも素数っぽいのですが、レピュニット素数は意外に稀のようです。11の次のレピュニット素数は1が19個並ぶまで現れず、その次は23個。その次は飛んで317個。その次はさらに飛んで1031個の時だそうです。

レビュニット素数がどんなタイミングで出現するのか、あるいは無限に存在するかどうかというのは未解決問題となっており、好事家たちの関心を引くのもわかるような気がします。

                        【校長】


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

梅雨明け

いつも本校のHPにお越しいただきありありがとうございます。

 

気象庁は「今日11日、九州南部が梅雨明けしたとみられる」と発表しました。平年より3日早く、昨年より2日早いそうです。そういえば、今日は朝から本当に気持ちのよい陽光が部屋に差し込んでいて、夏生まれの私としては夏本番の到来を嬉しく思ったところでした。

 

    右の写真は、昨日(10日)の夕方5時頃、本校の上に出現した虹です。最近虹をよく見ます。確か、この一ヶ月で4回目(内1回は月夜の虹でした)。飛行機から見ると、遮るモノが無いので丸く見えるとか聞いたことがあります。本当かなぁ?

 

今日は昼から熊本市内で研修会でした。途中の休憩時間に野球の試合結果が入り(対御船高校戦、6対0で勝利)、回りの先生方から祝福の言葉を頂きました。

その後、熊工で所用を済ませ、夜の9時過ぎに人吉(学校)に帰って来ました。不在の間にたまっていた書類に目を通した後、HPを開けたら、午後10時12分現在の総アクセス数は、1107369

 

この数字、何か閃くものがありました。素数?

いや、違います。素因数分解は次のようになります。

 

  1107369=3×41×3001  ・・・・・・・・・・・①

 

じゃあ、何かというと、上4桁の数が下3桁の数で割り切れるということです。

即ち 

1107÷369=3  ・・・・・・・・・・・・・・・・・②

 

あまり面白くありませんか?? ちなみに、

上4桁の1107を素因数分解すると、1107=3×41 ・・・③

下3桁の369を素因数分解すると、  369=3×41 ・・・④

となります。

 

①~④を眺めてみると、何の脈絡もなさそうで何か秘密が隠れていそうで、不思議な気分になり、暫くボ~っと見とれてしまいました。

生徒の皆さんたちは、7桁の数、そして上4桁、下3桁のそれぞれの数の因数にどのような関係があればこのようなことが起こるのか見破りましたか?

 

心移りしました。いつものように、1107369という数字の並びをそのままにして、加減乗除等の記号を入れて、今日の日付である711を作ってみます。

 

1×(107×3!+69)=711 → 7月11日(梅雨明け)

 

これまた、簡単過ぎて面白くありません。もう一ひねり・・・と考えていたら、警備員の方が「まだ残られますか?」と来られました。時計を見たら午後11時。官舎に帰ります。

【校長】

今日は半夏生

いつも本校のHPにお越しいただきありありがとうございます。

また月曜日が始まりました。先週末に期末考査が終わり、月も変わって生徒の皆さんの頭の中は夏休みに向かって一直線といったところでしょうか?

今日は1年の折り返し点にも当たります。日がだんだん短くなっていることを実感している人がどのくらいいるのか分かりませんが、夏至から数えて11日目の今日7月2日は、暦の上で「半夏生(はんげしょう)」と呼ばれています。

朝からラジオで「今日は半夏生」と言っていたのを聞いて、「半夏生」の3文字を初めて目にした時、「はんなつなま?半分夏が生まれる? これっていったい何?」と反応した遠い昔を思い出しました。昔といえば、私、昔、大阪の企業に勤めていて、関西では半夏生の日に行事食としてタコを食べる習慣があったことも思い出したわけですが、この「半夏生」の意味をよく知らなかったので改めて調べてみました。

この「半夏生」、そもそも植物の名前らしいです。図鑑で調べたところ、右の写真のようなドクダミ科の植物で、今頃花を咲かせることに由来するんだそうです。

葉の片面(表面)だけが白くなることから古くはカタシログサ(片白草)とも呼ばれたり、「半化粧」と表記されたりすることもあるそうです。湿地帯を好む絶滅危惧種とありました。私は目にしたことはありませんが、皆さんは見かけたことありますか?

「半夏生」は昔から農作業の大事な節目とされ、田植えを終わらせる目安とされてきただけでなく、この日の天気で収穫を占ってきたそうです。この頃に降る雨は「半夏雨」と呼ばれ、大雨になることが多いとありました。

話は大きく変わりますが、本日7月2日午前0時3分現在の総アクセス件数は、1100000 です。 百十万! 久々にいい数字を目にしました。

手始めに素因数分解をしてみたくなりました。

  1100000=2×5×11 

従って、その約数は、1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 25, 32, 40, 44, 50, 55, 80, 88, 100, 110, 125, 160, 176, 200, 220, 250, 275, 352, 400, 440, 500, 550, 625, 800, 880, 1000, 1100, 1250, 1375, 1760, 2000, 2200, 2500, 2750, 3125, 4000, ・・・(途中省略)・・・, 55000, 68750, 100000, 110000, 137500, 220000, 275000, 550000, 1100000 

の72個あることになります。

次にいつものように、1100000という数字の並びをそのままにして、加減乗除等の記号を入れて、今日の日付である72を作ってみます。

(1+1)×{(0!+0!+0!)!}!!!×(0!+0!)=72

【注】 中学生の皆さんへ もう何度かこの記事の中でも説明をしていることにはなりますが、!は「階乗」または「ファクトリアル」と読み、詳しいことは高校の数学で学習します。ここにある3!なら、3×2×1を計算して6になります。このようにn!なら、n×(-1)×…×3×2×1の自然数の積を計算します。

そして、0!(ゼロの階乗)は1です。これは約束(決め事)ですから、「どうしてそうなるの?」とか考えたらいけません。

    ”!”が2つ以上つく「多重階乗」については、高校の学習範囲も超えてしまいます。しかし、そんなに難しくはないので、興味ある方は昨年10月22日の記事「祝 総アクセス数800000件達成」をご覧ください。校長室>徒然雑記帖から入ることができます。

ちなみに、6!!!なら3つおきの階乗ですから、6×3で18になります。

最後に・・・、昨日7月1日(日)は、高校就職では求人受付開始日でした。実質、今日から求人票を持参して企業の方が来校されます。

いい印象を持って帰っていただけるように、生徒の皆さんも日常の所作を今一度点検してください。

【校長】


 

 

 

 

 

 

 

 

 

 

 

 

 

明日から期末テスト

いつも本校のHPにお越しいただきありありがとうございます。

また月曜日が始まりました。梅雨の中休みでしょうか、朝から青空が広がって気持ちがいい一日です。

 

先ほど校内を回った時は、明日から期末考査ということで考査前の最終確認や試験勉強をする授業を多く見受けました。

今日は私たち教職員の完全定時退勤日に合わせて、生徒の皆さんたちも部活動がない日になります。さっさと下校して、ラケットやバットを鉛筆に持ち替えて、しっかり勉強に励んでください。

勉強に疲れたら夜空を見上げてみてみるといいかもしれません。左側がちょっと欠けた大きな月がぽっかりと浮かんでいることでしょう。淡い月の光が目を優しく癒やしてくれるはずです。満月は3日後の6月28日(木)です。

 

ところで、「最近アクセス数を話材にした記事が最近出ていませんね」と、私自身も気にしていたことについて、何人かの先生方から声をかけていただいています。

今年、4月6日に6桁から7桁へと1桁あがり100万台になりました。100万に達した後は(およそ1週間後に110万になりそうではありますが)、なかなか興味をひく数字が出現しなかったことによるものです。

 

本日6月25日16時25分現在の総アクセス件数は、1095470 です。正直、食指が動く数字ではありませんが、久々にやってみます。(数字の並びをそのままにして、加減乗除等の記号を入れて、今日の日付である625を作ってみます)

 

1095-470=625 → 6月25日

 

あっという間に立式できましたが、全く面白みがありません。もう一ひねりしてみます。

 

(1+0!)+5!-4-[√7]―0!=625 → 6月25日

 

【注】 中学生の皆さんへ !は「階乗」または「ファクトリアル」と読み、詳しいことは高校の数学で学習します。ここにある5!なら、5×4×3×2×1を計算して120になります。このようにn!なら、n×(-1)×…×3×2×1の自然数の積を計算します。そして、0!(ゼロの階乗)は1です。これは約束(決め事)ですから、「どうしてそうなるの?」とか考えたらいけません。

 

    この式にはもう一つ見慣れない記号([  ])があります。これはガウス記号と呼ばれ、その数を超えない最大の整数を表す記号です。私の記事では初めて登場する数学の記号になりますが、そんなに難しくはありません。例えば[.14]=3になりますし、[-0.23]=-1となります。

従って、上の式では√7≒2.645・・・ですから、[√7]=2です。

 

数学の先生に聞いたところ、ガウス記号は教科書に載っていないので、本校では扱ってないそうですが、教科書に載っていなくても『実数xを超えない最大の整数を[x]と表すこととする』という注意書きを問題文に明示したうえで、大学入試には出題されていますので注意が必要です。就職試験でも前述の [-0.23] =? 程度の問題でしたが、出題されていたのを受検報告書で見た覚えがあります。

ちなみにガウスは、19世紀のドイツの超天才数学者・物理学者です。彼の業績は極めて多岐に渡り、数学や電磁気などの物理学で彼の名を冠した定理や法則が多数存在するんだそうです。

 

 

話は大きく変わって、朝のテレビで言っていたことになります。本日、6月25日は、1960年(昭和35年)の今日、自動車による交通が発達し、道路における危険の防止と交通の安全と円滑、道路交通による障害の防止を目的とした「道路交通法」が施行された日なんだそうです。

 

道路交通法と聞いて、私たち教職員がいつも気をつけておかなければならないことは、「第65条第1項 何人も、酒気を帯びて車両等を運転してはならない」だと強く思っています。

 

* 法律解説書の注釈には、「何人」というのは、運転免許を受けている人にかかわらず、全ての人が対象で、車両等とは、自動車はもちろん、電車や軽車両等(自転車等)までを含むとありました。

 

先月、熊本市で自転車に乗って登校していた高校3年生の女子生徒が酒気帯び運転の人が運転するワゴン車にはねられて死亡するという大変痛ましい事故がありました。どんなに気をつけていても飲酒運転のクルマに巻き込まれたらどうしようもなく、この報に接して大きな無力感を感じました。

生徒の皆さんたちも、もうすぐクルマの運転免許証を手にするはずです。お互いに良き交通社会人でありたいものです。

【校長】

サイン・コサイン何になる・・・♪

公開授業週間の今週、2年生の各教室では、数学で三角関数の加法定理をやっています。「ここって苦労する所なんだよな・・・」と、自分自身も三角関数に手を焼いていた高校時代を思い出しました。

自分が数学教師だったら入門程度の三角関数の範囲でどんな問題を出すだろう・・・と、10問作問してみました。

生徒の皆さん、三択式ですからよかったら解いてみてください。

一部おふざけの問題も入ってますので、あくまでも暇つぶしにどうぞ。

でも、1問20秒のペースで解いていって、7問以上正解だったら、「三角関数検定3級」位の力はあるのでは?と思います。


1 三角関数で、sinは日本語で「正弦」といいますが、cosは何という?

①余接 ②正接 ③余弦


2 三角関数の主役、sinさん、cosくん、tanさんのうち、いつも自虐的にひがんでいると思われるのは誰?

sinさん ②cosくん ③tanさん


3 アンケートで「三角関数が嫌い」と答えた日本の高校生が、その理由として挙げた中でいつも最上位にあるものは?

① 公式が多い。 

② 三角関係を思い出して苦しくなるから。

③ sincostanとの出会いが「超唐突!!」で「何、コイツら?」の思いをずっと引きずってしまったから


4 三角関数のイロハともいえる三角比(三角形、特に直角三角形の辺の比を考える分野)は、いつ頃どこで産声をあげた?

① 紀元前約2000年頃のエジプト

② 紀元前約200年頃のギリシャ

③ 1740年頃のスイス


5 人吉市役所と八代市役所間の直線距離は36.368km36368m)で、標高差は103mである。右図のような三角形を考えるとき、勾配(こうばい)に相当するΘはおよそ何度?

0.016° ②0.16°  ③1.6°


6 次の角度のうち、sincosの値が等しくなるのは?

135° ②225°  ③315°


7 sin75° と sin30°+sin45°の大小関係は?

sin75°>(sin30°+sin45°)

sin75°=(sin30°+sin45°)

sin75°<(sin30°+sin45°)


8 中学校で習った「三平方の定理」というのは、【  】定理の特別な場合(θ=90°の場合)だった。

①正弦  ②余弦  ③正接

 

9 次の勉強嫌いの生徒のほざきに、教師になったつもりで力強く論破してください。一番説得力のあるものは?

「何でcos135°を求める必要があんの?やってる意味ねぇし、人生に三角関数なんか必要ねぇし」

① 三角関数が必要な職業が選べなくなり、人生の選択肢を狭めてしまうよ!

② 私は今その三角関数を君たちに教えることでお金をもらってま~す。

③ 「何の役に立つの?」って疑問は「そもそも何で必要なの?」って疑問なわけで、その答えは「じゃあ、あんた何で生まれたの?」に帰結するよ!


10 右図で加法定理を考えてみた。
xに相当する長さは?

cosβsinα

sinβcosα

cosαsinβ


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


【答え】

1:③  2:③  3:①  4:①  5:② 

6:②  7:③  8:②  9:①②③(どれを選んでも正解) 10:③


【解説】

    1: 数学Ⅰの教科書で確認してください。

既に習ったように、sin(サイン)とcos(コサイン)の間には、sin2θ+cos2θ=1(サインの2乗とコサインの2乗の和は1)という強力な関係があります。その意味で「サインとコサインは一対」であると言っても過言でありません。コサインの英語表記cosineは、cosineco-は「~と共に」という意味を作る接頭辞です。なるほど、コサイン(cos)はサイン(sin)と常に共にあるので、この英語表記は分かりやすいです。しかし、日本語になるとcosがなぜ「余弦」と名付けられたのか?

「余」に込められた意味等を追究してみるのも一興かもしれません。


2: 次のサイトを見てみてください。tanさんの嘆きが聞こえてきそうです。

http://nlab.itmedia.co.jp/nl/articles/1710/18/news049.html

数学Ⅰでよく出題される三角関数の式の証明では、tanΘが出てきたらsinΘ/cosΘに直して計算すればうまくいくことが多いです。でも、とかく分数の計算はややっこしくなりがちで、tanΘを見ると「うわ…」と引かれる原因なのかもしれません。

A+B+C=π のとき、tanA+tanB+tanC=tanAtanBtanCなんていう美しい公式もあります。tanさんの良いところを見つけて、エールを送ってください。


3: あるアンケート(自由記述)で②の回答を見たとき笑ってしまいました。

私、三角関数ほど単純なものはなく、三角関係ほど複雑なものはないと思うのですが・・・。

皆さん方が学習してきたように、三角関数はまず直角三角形による定義をしますが、次に単位円による定義に拡張されます。その拡張された定義の元では三角関数は「円関数」と呼ばれることもあります。従って、三角関数からどうしても三角関係を連想される方は、「円関数!!」と5回ほど唱えれば邪念が払われるかもしれません?


4: これは数学史の問題です。その手の本を紐解くと、①の紀元前 2000 年頃、エジプト人がピラミッドの建設で原始的な三角比(1年の最初の頃に習った三角関数)を使っていたとあります。

そして、今2年生の皆さんが習っている三角関数や加法定理は、②の古代ギリシャ時代には確立されていたというので驚きです。

なお、③の1740年ごろというのは、オイラーが次の公式を発見した記念すべき年です。

 ei xcos+ isinx 

実数の世界では全くの無関係のように思われていた指数関数と三角関数が、複素数の世界では親戚どころか兄弟であったことを意味する重要な式です。

この式は、大学の工学部や理学部等に進学すると数学で学びます。今の段階ではこんな式があるんだ・・・という理解で十分です。オイラーはスイス生まれの数学者で、人類史上最も多くの論文を書いた数学者であったと言われています。


5: これは直感で正解してほしいところですが、ある意味難問かもしれません。

実際、人吉から八代方面に向かって国道219号線を車に乗っていると、道がずっとゆるやかな下り坂になっていることに気付くはずです。一体どのくらいの勾配なんでしょう?

これは、逆三角関数と呼ばれる計算をすることで求めることができます。

逆三角関数は数学では習っていないと思いますが、設計などの専門科目で学びますし、計算技術検定2級を受検した人にはおなじみのはずです。

Θtan-1103/36368)を関数電卓に入れると、約0.16と表示されます。


6: 三角関数を単位円で再定義した際に、sinはy座標、cosはx座標になります。従って、第1象限と第3象限でsincosが等しくなることがありえます。

ちなみにこの問題は競技クイズ日本一決定戦の予選第1回戦(1問平均10秒のペースで解答する力が要求)に出題されました。


7: 頭の中に単位円を描き、30°、45°、75°それぞれのy座標をイメージしてください。30°のy座標と45°のy座標を重ね合わせた(足し合わせた)高さと75°の高さの比較になります。頭の中に図が丁寧に描ければ答は自ずと③と分かるはずです。

ここでは計算で求めてみます。

sin30°=1/2(=0.5)、sin45°=√2/2です。

ここで√2を約1.4として計算すると右辺は、

sin30°+sin45°=0.50.71.2

では、左辺のsin75°はいくらでしょう?

既に「加法定理」を学習した皆さんなら簡単です。

sinαβ)=sinαcosβcosαsinβを使って

sin75°=sin45°+30°)

sin45°cos30°+cos45°sin30°

(2/2)( 3/2)(2/2)( 1/2)

(6+√2)/4

ここで、先ほどと同様に、√6を約2.4、√2を約1.4として計算すると、

sin75°=(√6 + √2/4=(2.41.4/43.8/40.95

従ってsin75°<(sin30°+sin45°)となります。

ここで覚えておいてほしいのは、

sinαβ)=sinαcosβcosαsinβ

であって、

sinαβ)=sinαsinβ 

にはならないということです。

では、この問題は加法定理を知らないと解けないのでしょうか?

思い出してほしいことがあります。45°の直角二等辺三角形と30°と60°の直角三角形について、それぞれ辺の比が「 11:√2 」と「 12:√3」というのがありました。中学校のときからお馴染みのとおりです。

実は、75°と15°の右図のような直角三角形では、辺の比が「 4:√6 + √2:√6 - √2」というのが成り立ちます。

これを覚えておくと15°と75°について、sincostanの値が図を見ながら、sin75°=(√6 + √2/4とか、たちどころに分かりますので非常に便利です。

某電力会社の就職試験問題で、sin75°=(□+√2/4という穴埋め問題で、□に√6を入れさせる問題が出題されたことがあります。加法定理を万一忘れていてもこの辺の比を思い出せば楽勝です。

余談ですが、sincos加法定理そのものの証明が1999年(平成11年)の東京大学の入試で出題されました。「公式は証明してから使うべき」というメッセージなんだろうか、それとも「教科書の内容すら身に付いていないのに難しい問題集を解いている受験生に対する警告」なのだろうかとか色々騒がれました。出来も非常に悪かったそうです。勿論、皆さんは習ったばかりなので証明はバッチリですよね?


8: 余弦定理とは、a2b2 c22bccosAという形の公式です。

今、A=90°のときcos90°=0ですから、a2b2 c2となり、これは中学校で習った三平方の定理そのものです。

正弦定理とは、a/sinA b/sinB c/sinC という形の公式です。

ちなみに、正接定理と呼ばれているものはありません。

余弦定理を用いることにより、三角形の「2辺の長さとその間の角度」から「残り1辺の長さ」を求められます。また、三角形の「3辺の長さ」が与えられた場合に、すべての角の余弦が求められ、すべての「角の大きさ」を考えることもできます。これに対して、正弦定理は三角形の「1辺の長さ」と「2つの角の大きさ」が与えられた場合に、「残りの2辺の長さ」を求めることができます。慣れるまでどちらの定理を使えばいいのか悩むことがあるかもしれません。


9: これはどれを選んでもマルにします。あなたなら先生からどう言われたいですか?私、自分で解答を作りましたが、3つともとても気にいっています。

この問題の作問のヒントになったのは、「サイン・コサイン何になる・・・♪.」と歌詞の中に出てくる『受験生ブルース』でした。日本のフォークソングの源流を作った男と言われる高石友也の代表曲で、1968年(昭和43年)に大ヒットしました。今でいう「団塊の世代」が大学受験地獄(この言葉は今、死語かも?)を経験していた頃で、当時私は小学3年(9歳)でした。テレビやラジオから毎日のように流れるその哀しい曲を何度も聞いているうちに、サイン・コサインという数学用語がしっかりインプットされました。

高校になって初めてサイン・コサインを習い、「こんなの勉強して何になる?」とその歌詞の意味するところが分かったような気が私自身しましたし、誰でも一度はそう思うのではないかとか考え込んでしまいました。

そういえば、鹿児島県の伊藤祐一郎前知事が2015年(平成27年)8月、「サイン、コサインを女の子に教えて何になる?」などと発言してちょっとした話題になったことがありました。

「いろいろな人生の問題があるため、今の均一な教育の仕組みを変えた方がいい」との思いからの発言だったと釈明されましたが、知事もきっと『受験生ブルース』を聞いて育った世代なのかな・・・と思った次第でした。

私自身も昔、生徒指導部で交通係をしていた頃、多分通学自転車のマナーの悪さに憤慨したドライバーだったんでしょう。苦情の電話の中で「アンタの高校、サイン・コサインとか難しいことを教えなくてもいいから、信号の見方をきちんと指導してくれ!」と罵声を浴びたことがあります。悲しい思い出です。


10: 三角関数はまず直角三角形による定義をします。これはまさにその範囲です。図をよく見ながら丁寧に読み解いていくと必ずわかるはずです。

私は昔からこの図を見るたびに、「本当によく出来た図だな!」と思っていました。あくまでも、α、β、α+βがいずれも鋭角という制限付きではありますが、加法定理がこんなに分かりやすく図の中に表現できるなんて、ある意味凄いです。

是非、sin(α-β)やcos(α-β)が表示できる図も考えてみてください。

【校長】


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

「ひよどり越え」の名前の由来を探る(その2)

 中庭のあじさいの花が二輪咲いています。なぜ紫陽花と書いてアジサイと読むのか知りません。でも、この淡い紫色を見ていると夢見心地の気分にひたれます。

 今朝、高校総体の行進の練習がありました。総体が終わるまで梅雨入りは待ってほしいと願っていましたが、とうとう熊本も昨日梅雨入りしてしまいました。




 注:以下の記事は、昨年7月20日にアップした「アクセス数682962→鵯(ひよどり)越えの戦い)」の中編になります。(昨年7月20日の記事は→こちら

本校生が「ひよどり越え」と呼んでいるのは、平家物語の中でも語られる平家滅亡の前兆となる戦い(一ノ谷の戦い)に出てくる呼称です。

いつ頃誰が列車通学生が上ってくるあの坂を「ひよどり越え」と名付けたのか、人吉市史や本校の30周年記念誌などで調べましたが結局分かりませんでした。それどころか意外なことを知りました。それは・・・

「黒坂」

昭和41年4月8日号の人吉新聞に「黒坂の登校階段完成」の見出しに続く次のような趣旨の記述があり、その当時は「黒坂」と呼ばれていたようです。

球磨工業高校通学生徒の一部父兄(主に汽車通学生から市に対し整備を陳情されていた市内城本町の西校登校道路(人吉駅裏の通称黒坂)がこのほどコンクリート階段に整備され、通学生徒をはじめ、地元の利用者は喜んでいる。

同道路は急勾配のため、整備しても一雨降ればすぐ土砂を洗い流し、路面が悪くなり地元民からも整備方が陳情されていた。昨年は悪路を通行する生徒の姿を見て、同町民政委員谷川源昨さんが老身を問わず道路整備に汗を流し生徒から感謝されたこともあったが、今回の整備で通学生も安心して通れると言っている。同道路は延長140m、巾員1mを全長階段にしている。工費は11万6千円。

一方、「大悲坂」とも

相良三十三観音の一つ、九番村山観音(写真右)はJR人吉駅の裏手にあります。案内のパンフレットには「大村横穴群にある『大悲坂』が登り口」とありました。

そのパンフレットには、「西暦1764年紺屋町の商人達が協力し合い、観蓮寺の観音堂に行く参道を苦労して切り拓き、その事業を後世に残そうと「大悲坂碑」(だいひさかひ)を建てています」とあります。従って、この登り坂は250年前頃は、「大悲坂」と呼ばれていたことになります。

左の写真では読み取れませんが、実際に石碑に近づいて見ると、確かに大悲坂と彫り込んであります。

村山観音が安置されているお堂は「大悲殿」と呼ばれているところから来ているのかもしれません。手元の国語辞典によると、「大悲」とは「他人が悲しみ苦しんでいるのをみて助けてあげたいと思う人の心」とあり、どうやら仏教用語のようです。

結局「ひよどり越え」とは?

私、赴任当初から気になっていたことがあります。それは、平家の落人伝説が色濃く残る地域に所在する学校だからある意味当然かもしれませんが、本校も色々と落人伝説と関わりがあるのでは?ということです。どんな点にそれを感じたかと言うと・・・

① 今、話題にしている平家物語にも出てくる「ひよどり越え」のネーミングがまさにそれ。

隣の人吉西小学校の先生方を含め十人近くの行き交う地元の方々に坂道の名前を尋ねてみましたが、その全員が「この坂に名前があるの?」とか「知らない」といった答えばかりでした。人吉西小学校の某先生は、「球磨工生が上がってくる坂」と呼んでいると言われ、「ナルホド!」と思いました。

また、学校評議員をお願いしている1期生の馬場上氏にも尋ねてみたところ、「当時何と呼んでいたか忘れたが、そういう(=ひよどり越え)呼び方はしていなかったはずだ。初めて聞いた」という証言をいただきました。

② 建築科の実習工場の前にキジ馬が3騎積み上げてありました(右写真)。フラワーポットとして生徒が作った作品だそうです。言うまでもなく、キジ馬は平家の落人たちが都での華やかな生活を思い返しながら作る手慰めとして作り出した民芸品だと言われています。


*  大村横穴古墳群(Omura side hole tomb)は、JR人吉駅の北側にあり、岩の崖には27の横穴が掘られています。1400年ほど前の古墳時代後期の墓だと言われています。左の写真のように、人吉駅のホームからぽっかり口を開いている穴が見えます。何も知らなければきっと「あれはなぁに?」と思うはずです。古代人が闊歩していたことを彷彿させる場所のすぐ隣に停車場がある光景は日本広しといえどもあまりないかもしれません?

パンフレットには、「この中の7基の外壁に馬などの動物、武具、文様等の装飾が残っていることから、早くから学界にも注目され、大正10年(1921年)3月3日に国指定史跡となりました。昭和58年から毎年7月第4土曜日には地元城本町住民が中心となって「古墳まつり」が続いています」とありました。

この古墳に沿って、約240人の列車通学生が毎日登下校で使っている365段の階段があり、本校関係者が「ひよどり越え」と名付けているのです。

途中に2箇所外灯があるものの、夜はとても暗く、生徒総会でも外灯増設の要望が出ていました。その道を使っているのは本校生がほとんどだからということでしょうか、外灯の電気代は何と本校が支払っています。4月分は735円でした。

人吉市に外灯の増設を陳情しても国指定の文化財(大村横穴古墳群)だから形状の変更が難しいらしく、なかなか進んでいないのが現状です。

後編に続きます。

【校長】