2018年4月の記事一覧
3乗の展開の公式
いつも本校のHPにお越しいただきありありがとうございます。
今日の2限目、3階の1年生の教室です。建築科や機械科ではモーメントや力の合成など専門の内容が本格的に始まっていました。また、電気科では数学で3乗の展開をやっていました。
3乗の展開とは、(a+b)3=a3+3a2b+3ab2+b3 の公式を使って(2a+3b)3などを求めるものです。
板書されたこの公式が廊下越しに見えて、自分が高校の時の数学の恩師(故人)のことを思い出してとてもノスタルジックな気持ちになりました。
その先生、中学数学で学んだ2乗の展開公式と3乗、(そして発展的に学ぶ)4乗の展開公式の中に出てくる各項の係数を抜き出して板書され「規則性を見つけてごらん」と水を向けられたのです。
どういうことかというと、
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
各項の係数を抜き出すと
121
1331
14641
なかなか見えてこないかもしれませんが、
(a+b)1=a+b
を2乗の展開公式の上段に加えて、係数の並びを少しずらすと
11
121
1331
14641
のように、綺麗な三角形の形に係数が並んでいきます。そして上の段の係数と下の段の係数の間には規則性があります。
この記事をお読みの1年生や中学生の皆さん、もう見抜けましたか?
上の段の左上の数と右上の数の和が下の段にきています!
この三角形は「パスカルの三角形」(Pascal's triangle)と呼ばれています。圧力や応力の単位[Pa]として工業で学ぶ皆さんにとってはおなじみのフランスのパスカル(1623~1662)ですが、彼が最初に気付いたからということでしょうか?名前が残っています。しかし、数学史を紐解くと、実際にはパスカルより何世紀も前の数学者たちも研究していたようです。
従って、14641の下の段の数字の並びは、1 5 10 10 5 1 となりますので、(a+b)5の展開公式は、
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 となります。
係数の並びは分かるけどa4bとかがどういう仕組みになっているのか、こんがらがっている人がいるかもしれません。
a について見るとa5, a4, a3, a2, a1, a0(a0=1)のように次数が下がり、
b について見るとb0,b1,b2,b3,b4,b5のように次数が上がっています。ここで、aとbの次数を合わせるといつも5次(5乗)になるということは見逃さないで下さい。
まぁ、こういう公式なんて覚えていなくても、気合いで1つずつ展開すれば済む話なんです。でも、覚えていたほうが速く解けるし、計算による脳のエネルギー消費を節約することができるわけです。最後に・・・
Which do you like better, expansion or factorization?
(展開と因数分解、どちらが好きですか?)
私は断然・・・。
【校長】
初志貫徹・有言実行
いつも本校のHPにお越しいただきありありがとうございます。
ここ数日、199名の新入生が入学式の日に提出した「決意作文」を読んでいます。「精一杯」「しっかりと」「挑戦」といった言葉がちりばめられ「やる気」がビンビン伝わってくる作文がある一方、「ご指導よろしくお願い申し上げます」で締めくくられ謙虚さが感じられる作文まで色々あり、とても感銘を受けます。と同時に、私たち教職員もそれに応えるべく頑張らないといけない!という気持ちがいやがうえでも高まります。
この種の作文は就職の際にもよく書かされるもので、その時は意気込むあまり大きなことを書きすぎないのが美徳なのかもしれません。しかし、高校生の決意作文にそれは求めません。作文で綴った本校で頑張りたいという大志(これは今年度の学校テーマです)、その気持ちをいつまでも忘れないでほしいと心から願っているところです。初心忘るべからず*、初志貫徹です!
* 入学式の定番フレーズでもある「初心忘るべからず」、生徒の皆さんもきっと一度は耳にしたことがあるはずです。およそ600年前、能を大成した世阿弥(ぜあみ:多分歴史で習ったはずです)が著わした「花鏡」の中に見える言葉だそうです。
実は、私もこの言葉を引用して、今年度の入学式の式辞を作っていました。でも、長くなりそうでしたのでやめました。今日、改めて調べていたら、世阿弥がいう「初心」とは、「物事を始めたころの新鮮な気持ちや謙虚な気持ち」を指すのではなく「みじめさや未熟さ」を指していると知りました。即ち、「その心を忘れるな」ということは、「あの頃のみじめな状態には戻りたくない」という気持ちを常にもって、芸事に精進しなさいという意味らしいです。そういう隠された意味を知っていると、また違った感じに聞こえます。
では、決意作文で触れられていた本校で「頑張りたいこと」のランキング6位までと、特に印象に残った記述をいくつか紹介します。
頑張りたいこと No1・・・学習 (169名:84.9%)
No2・・・部活 (160名:80.4%)
No3・・・資格取得( 62名:31.1%)
No4・・・生活面 ( 57名:28.6%)【時間を守る等】
No5・・・学校行事( 44名:22.1%)【体育大会等】
No6・・・友達作り( 35名:17.6%)
○ 他人の意見に耳を傾け、相互が納得する意見を見つけ出すこと、そして何かを頼まれた時にその期待に近い結果を残すことに心掛け、人を愛するのはもちろん人から愛される人になりたい。
○ 私には一つの大きな目標があります。それは○○部の仲間と共に全国の舞台で活躍し、日本一になることです。
○ これからこの学校でものづくりを学ぶ中で、誠実の心を大切にしていきたいです。なぜなら、誠実さがなければ良い作品ができないからです。
○ 部活動では運動部のマネージャーになり、選手を支えながら選手と一緒に成長していけるような部活づくりをしたいと考えています。
○ 私の力で○○部を必ず全国大会に出場させます。
○ 僕の好きな諺に、「為せば成る、為さねば成らぬ何事も、成さぬは人の為さぬなりけり」とあります。この言葉の通り、強い意志を持ち、何事にも挑戦し続けていきたいです。
○ 過去の自分を一度捨て、新たに勉学に励み進化した自分を両親に見せたいです。・・・そして、今までお世話になった地域の方々、友達、家族一人一人に恩返しをしたいです。
○ 「努力は人を裏切らない」この言葉を信じ一日一日を大切にしていきたい。
○ 先輩には敬語を正しく使いたい。
○ まだ人吉球磨から甲子園に出場したことがないので、部活での練習に加え、自主トレを人一倍して県代表として甲子園に出場したい。
○ ○○に就職したいという夢を必ず叶えるためにも、高校で取れる資格を全部取るように頑張ります。資格はお金がかかると思うけど、親に感謝して一発で合格できるように頑張ります。
○ 前期試験の面接で言ったとおり、生徒会長になりたいと思っています。
○ 僕が高校で頑張りたいことは全て校訓に当てはまります。剛健誠実、自主自律、好学敬愛の三綱領はとても大事なので、三年間大切に心掛けます。
○ 将来○○関係に進みたい。そこは英語がとても大切なので英語をしっかりとまじめに取り組みたいです。
○ 中学校では給食があってバランスの取れて美味しいご飯を食べてきましたが、もうそんなのはないので、自分でバランスの取れた食事をしていきます。
○ 私が球磨工業高校で頑張りたいことは、つねに「トップ」に立つということです。
○ 最後に僕が挑戦したいことは3年間無遅刻無欠席を達成することです。
有言実行でいきましょう。頑張れ、新入生!
【校長】
spring storm
いつも本校のHPにお越しいただきありがとうございます。
一昨日午後の春の嵐、すごい強風と大雨でしたが、生徒の皆さんはどのように過ごしましたか?
私は窓を叩きつける雨を見ていて、ヘルマン・ヘッセの「春の嵐」を思い出しました。40年前、大学2年の頃に読んだ覚えがあります。確か切ない恋愛ものだったような気がしますが、内容を思い出せません。
あのころ何を考えてその小説を読んだんだろう・・・、そう思うと居ても立ってもいられなくなり近くの本屋さん(ブックオフ)に大雨の中、車を走らせました。あいにく、ありませんでした。
もう1軒行ってみました。またしても空振りでした。諦めて帰る頃は、風雨もだいぶ治まっていました。側溝の蓋には、飛び散った花びらが一杯。桜は2週間前に終わっています。何の花びらでしょう。ハナミズキ?
司書の坂口先生に伺ったところ、「『車輪の下』はあるんだけど・・・」ということでした。残念です。
【校長】
入学式、無事に終わりました。
いつも本校のHPにお越しいただきありがとうございます。
右の写真は、1年生のある教室の黒板に描いてあったメッセージです。「2時間かけて描いた」と担任の先生から伺いました。歓迎する気持ちがすごくこもっています。
改めまして、新入生の皆さん、入学誠におめでとうございます。真新しい制服やスーツに身を包んで臨んだ入学式、いかがでしたか?
実は、入学式が午後3時前に終わり物品販売等があっている中、午後4時45分からは人吉高校敷地内にある凛然寮(人吉球磨地域共同寄宿舎)で入寮式が行われました。私にとっても新入寮生にとっても大変忙しい一日でした。
入寮式も滞りなく終わり自宅に帰り、遅い夕ご飯を食べてホッとしてHPを立ち上げたら、今現在、午後10時32分現在の総アクセス件数は、1005678。
下4桁が5<6<7<8、末広がりでなかなかいい感じの数字です。
数字といえば、今日入学を許可した生徒・学生数は、本科が199名、専攻科が8名の計207名です。
合計の207は、各桁の和が9で3の倍数ですから、3で割り切れます。実際、素因数分解すると32×23となり約数は1,3,9,23,69,207の6個あります。
私としては、200に1不足している199という数字、丁度200じゃないのがとても残念なんですが、199はそれはそれで気になります。
もうお気付きと思いますが、これは素数です。しかも、各桁の数字を入れ替えてできる919,991も素数*ということで「これは一体どういうこと?」と一気にテンションがあがりました。
* 各桁の数字をどのように入れ替えても素数になる数字のことを「完全順列素数」ということを思い出しました。2桁の素数なら11,13,17,37,79の5個で、これを見つけるのは中学数学のレベルです。3桁なら199以外にどのような素数があるのか・・・?
けっこう面倒でしたが、199以外に113と337を見つけることができました。4桁ではどうなるのでしょうか・・・? 気が遠くなります。
ところで、199という素数は、各桁を循環させると991,919となり、そのいずれも素数ですので、「循環素数」でもあります。実は、199よりも2少ない197も197→971→719と各桁を循環させると、いずれも素数になりますので循環素数ですが、これは完全順列素数ではありません。(197,179,719,971は素数ですが、791が7×113、917が7×131と素因数分解されます)
最初に話題にした総アクセス件数の1005678の5,6,7,8の並びにヒントを得てごちゃごちゃやっていたら、またしても面白い性質をみつけました。何と199は、連続する6つの整数の平方の和で表されるということです。
数式で書くと 199=32+42+52+62+72+82
「美しい!」と見とれて、寝るのも忘れてしまいそうです。こうなると、専攻科の入学生の数である8にも何か意味を見出したくなります。
色々考えてみましたが、特に思いつきません。苦し紛れですが、199と8を結び付けるものとして「8n-1」ということ位でしょうか?
199=8×25-1
(あれ!、1不足が出てきました。199は、8n-1型で表される12番目の素数になります)
話は大きく変わりますが、桜が終わりハナミズキが青空に美しく映える頃となりました。右の写真は校長官舎の庭にあるものです。
歌手一青窈(ひとと よう)さんの歌でも有名なハナミズキ、図書館の植物図鑑によると、日本における植栽は、1912年に当時の東京市長だった尾崎行雄がアメリカ合衆国ワシントンD.C.へ桜(ソメイヨシノ)を贈った返礼として1915年に贈られたのが始まりとありました。日本人が桜を愛するように、アメリカではハナミズキが最も愛されるのだそうです。
明日は対面式、明後日は交歓会と、新入生を対象とした行事が続きます。
【校長】
祝 総アクセス数 百万件達成
いつも本校のHPにお越しいただきありありがとうございます。
本日4月5日、午後3時40分現在の総アクセス件数は、1000000。
ついに、6桁から7桁へと1桁あがり、総アクセス数が百万に達しました。
気の早い話ですが、もし現在のペースのアクセス件数(1日当たり平均1200件)がずっと続くと仮定すると、8桁の最小数である1千万になるのは、2048年12月頃です。その頃、今の生徒たちは40歳前です。どのような人生が開けているのでしょうか。考えるだけでワクワクしますし、自分はその頃どうなっているのだろうかと思うとなぜか切なくなります。そしてその間およそ20年6カ月間、7桁の様々な数を目にすることになります。
ところで、百万という数、とてもウキウキします。平方根(√1000000)は1000で、立方根(3√1000000)は100です。また、常用対数(log1000000)は6ですね。とりあえず素因数分解してみます。胸がドキドキ高まります。
26×56ですから、その約数は、1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 160, 200, 250, 320, 400, 500, 625, 800, 1000, 1250, 1600, 2000, 2500, 3125, 4000, 5000, 6250, 8000, 10000, 12500, 15625, 20000, 25000, 31250, 40000, 50000, 62500, 100000, 125000, 200000, 250000, 500000, 1000000の49(=7×7)個です。
このサイトではこれまで達成したHPの総アクセス数を取り上げて様々な角度から考察をしてきましたが、約数の個数が奇数個になったのは初めてです。以前、奇数個の約数の数について、その数学的な説明をこのサイトでしたことがあります。興味がある方は、校長室>徒然雑記帖から入って、昨年1月15日のサイトをご覧ください。「nが平方数⟺ nの約数の個数は奇数」とか書いてあります。
続いて、いつものように数字の並びをそのままにして、加減乗除等の記号を入れて、今日の日付である45を作ってみます。
((1+0!+0!)!)!!-(0!+0!+0!)(0!)=45 → 4月5日
【注】 中学生の皆さんへ !は「階乗」または「ファクトリアル」と読み、詳しいことは高校の数学で学習しますが、例えば6!なら、6×5×4×3×2×1を計算することになります。このようにn!なら、n×(n-1)×…×3×2×1の自然数の積を計算します。”!”が2つ以上つく「多重階乗」については、高校の学習範囲も超えてしまいます。しかし、そんなに難しくはないので、興味ある方は昨年10月22日の記事「祝 総アクセス数800000件達成」をご覧ください。校長室>徒然雑記帳から入ることができます。ちなみに6!!なら2つおきの階乗ですから、6×4×2で48になります。
そして、0!(ゼロの階乗)は1です。これは約束(決め事)ですから、どうしてそうなるの?とか考えたらいけません。
時間をあまりかけることなく立式できたのですが、できれば「!!」のような仰々しい記号を使わず、すっきりした式を作りたかったです。生徒の皆さん、もっとシンプルな式ができたら教えてください。
話は変わりますが、生徒の皆さんは100万と聞いて、どのようなことを思い出しますか。工業で学ぶ人たちですから、SI接頭辞の1000000 倍がM(メガ)、1/1000000 は µ(マイクロ)ということや、百万分率をppm (parts per million) ということはすぐに思い浮かぶかもしれません。
私は随分前に新聞で読んだある記事を思い出しました。私立文系の大学の受験者で数学(センター試験)を選択した学生としなかった学生の「その後の年収」の追跡調査に関するもので、京都大学の先生が調査したものでした。それによると、数学を受験した人の年収が平均100万円位多いという結果で、当時大変驚いてこの記事を何度も読み直しました。
今回、改めて関連記事を探しましてみたらネット上に残っていました。(興味ある方は「数学受験者の年収が100万円位多い」で検索してみてください)
「数学で鍛えた論理能力は社会に出て活躍の場を広げることにつながるので、子どものうちから数学力を身につけさせることに留意すべきである」という趣旨の記事に接し、生徒たちに数学の大切さについて話をした覚えがあります。
ところで、100万円の分の1万円札束を見たことがありますか?私は銀行で見たことがあります。その厚さ、およそ1cmで横向きに立てることができます。
100万円位ならベテランの行員さんの手にかかるとほんの数秒で数えられるみたいです。実際、100万円近いボーナスを、元行員の妻に手渡したところ「パパッと数えられたので味気なかった」というぼやきを友人から聞いたことがあります。
最後に「百万」が入っている背筋がぞくっとするような言葉を一つ。あまりにも有名なので、耳にしたことがある人が多いかもしれませんが・・・・。
喜劇王チャップリンが制作した映画「殺人狂時代」の中に出てくる次の言葉です。
1人殺せば殺人犯だが、100万人殺せば英雄だ。
この映画、私は見たことがありません。第二次世界大戦末期、「最新兵器」の実験台として、広島・長崎へ「原子爆弾」を投下し、30万人以上もの罪のない一般人を殺し、「戦争の早期終結」との大義のもと美化し、戦勝国の気分に酔っていたアメリカを痛烈に皮肉る内容の映画だそうです。そして、この言葉は20世紀の映画史に残る「名台詞(せりふ)」と呼ばれているようです。
来週の月曜日は始業式、そして入学式です。特に、新入生の皆さん、心の準備はできていますか?そして宿題は終わりましたか?
【校長】
学校情報
〒868‐8515
熊本県人吉市城本町800番地
TEL 0966-22-4189
FAX 0966-22-5049
E-mail
kuma-th@pref.kumamoto.lg.jp
熊本県教育情報システム
登録機関
管理責任者 校長 鶴田 栄一
運用担当者 ホームページ係